The Froude number for solitary water waves with vorticity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-Amplitude Solitary Water Waves with Vorticity

We provide the first construction of exact solitary waves of large amplitude with an arbitrary distribution of vorticity. We use continuation to construct a global connected set of symmetric solitary waves of elevation, whose profiles decrease monotonically on either side of a central crest. This generalizes the classical result of Amick and Toland.

متن کامل

Symmetry of Solitary Water Waves with Vorticity

Symmetry and monotonicity properties of solitary water-waves of positive elevation with supercritical values of parameter are established for an arbitrary vorticity. The proof uses the detailed knowledge of asymptotic decay of supercritical solitary waves at infinity and the method of moving planes.

متن کامل

Exact Solitary Water Waves with Vorticity

The solitary water wave problem is to find steady free surface waves which approach a constant level of depth in the far field. The main result is the existence of a family of exact solitarywaves of small amplitude for an arbitrary vorticity. Each solution has a supercritical parameter value and decays exponentially at infinity. The proof is based on a generalized implicit function theorem of t...

متن کامل

Solitary gravity water waves with an arbitrary distribution of vorticity

This paper presents an existence theory for small-amplitude solitary-wave solutions to the classical water-wave problem in the absence of surface tension and with an arbitrary distribution of vorticity. The hydrodynamic problem is formulated as an infinite-dimensional Hamiltonian system in which the horizontal spatial direction is the time-like variable. A centre-manifold reduction technique is...

متن کامل

Spatial Dynamics Methods for Solitary Gravity-Capillary Water Waves with an Arbitrary Distribution of Vorticity

This paper presents existence theories for several families of small-amplitude solitarywave solutions to the classical water-wave problem in the presence of surface tension and with an arbitrary distribution of vorticity. Moreover, the established local bifurcation diagram for irrotational solitary waves is shown to remain qualitatively unchanged for any choice of vorticity distribution. The hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fluid Mechanics

سال: 2015

ISSN: 0022-1120,1469-7645

DOI: 10.1017/jfm.2015.52